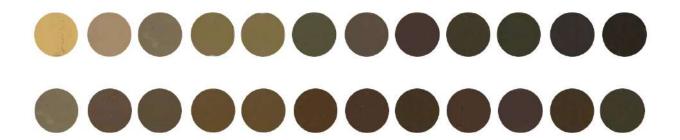

FICHA TÉCNICA GENERAL

LODO DESHIDRATADO PLANTAS DE POTABILIZACIÓN

TONELADAS ANUALES GENERADAS EN LAS PLANTAS DE POTABILIZACIÓN EN LOS AÑOS 2023 Y 2024


^{*}Total anual del toneladas generadas en todo el sistema de potabilización de EPM

REGISTRO FOTOGRÁFICO LODOS DESHIDRATADOS DE LAS DIFERENTES PLANTAS DE POTABILIZACIÓN

Colores Munsell

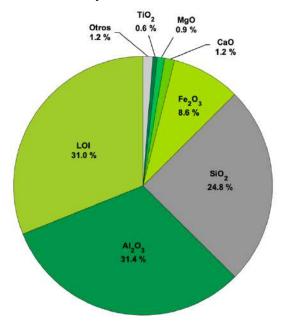
Contenido de humedad promedio

ANÁLISIS FISICOQUÍMICOS

Parámetro	Promedio	Desviación Estándar
Contenido de Humedad (%)	67,76	15,00
Contenido de Humedad* (%)	263,67	132,83
Sólidos totales (%)	32,24	15,00
Potencial de Hidrógeno (pH)	6,91	0,50
Conductividad eléctrica (µS/cm)	235,83	167,73
Sólidos volátiles 550°C (%)	26,80	8,57
Contenido de materia orgánica (%)	24,0	10,43
Contenido de sulfatos SO4 (mg/L)	32,33	50,96
Actividad puzolánica (mg CaO/g lodo)	481,41	116,88
Densidad real (g/cm³)	2,16	0,19
Densidad empacada (g/cm³)	1,10	0,11
Peso específico (g/cm³)	2,48	0,097
Área superficial (m²/g)	54,96	36,28
Diámetro de poro (nm)	7,94	2,26
Volumen de poro (cm³/g)	0,085	0,047

^{*} Humedad en base seca.

ANÁLISIS GEOTÉCNICOS Y MECÁNICOS


Parámetro	Promedio	Desviación Estándar	
Límite Líquido (LL)	297	100	
Límite Plástico (LP)	148	41	
Índice de plasticidad (IP)	149	77	
Pasa tamiz N° 200 (%)	92,33	12,94	
Grupo AASTHO	A-7-5		
Clasificación USC	MH - Limo de alta compresibilidad		
Humedad óptima(%)	48,37	14,42	
Densidad máxima seca (g/cm³)	1,08	0,14	
Resistencia a la compresión (kPa)	404,94	146,94	
Deformación (%)	1,79	0,58	

ANÁLISIS COMPOSICIONALES

Espectrometría de Fluorescencia de Rayos X (XRF)

En el siguiente gráfico se muestra la composición elemental promedio de los materiales identificados por Fluorescencia de Rayos X XRF

Espectrometría de Difracción de Rayos X (DRX)

En la siguiente tabla se listan los principales minerales cristalinos identificados por Difracción de Rayos X DRX.

Fórmula química general	Categoría
SiO ₂	Silicato
$Al_2Si_2O_5(OH)_4$	Filosilicato
(Na,Ca) AlSi₃O ₈	Tectosilicato
$Mg_3(Si_2O_5)(OH)_4$	Filosilicato
CaAl ₂ Si ₂ O ₈	Tectosilicato
Al(OH) ₃	Óxido
$KAI_2(AISi_3O_{10})(OH)_2$	Filosilicato
(K,H ₃ O)(Al, Mg, Fe) ₂ (Si, Al) ₄ O ₁₀ [(OH) ₂ ,(H ₂ O)]	Filosilicato
	SiO_2 $AI_2Si_2O_5(OH)_4$ $(Na,Ca) AISi_3O_8$ $Mg_3(Si_2O_5)(OH)_4$ $CaAI_2Si_2O_8$ $AI(OH)_3$ $KAI_2(AISi_3O_{10})(OH)_2$

REGISTRO FOTOGRÁFICO DE LOS SISTEMAS DE TRATAMIENO Y DESHIDRATACIÓN DE LODOS

HOMOGENEIZACIÓN Y PREESPESADO

<u>Tanques de Preespesado</u>

DESHIDRATACIÓN

Máquinas Centrífugas

Filtro Prensas

<u>Lechos de</u> Secado

ALMACENAMIENTO

<u>Tolvas</u>

<u>Costales</u>

Pilas en Celda

RECOLECCIÓN Y TRANSPORTE PARA DISPOSICIÓN EN ESCOMBRERA

Volqueta

MUESTREO PROBABILÍSTICO SISTEMÁTICO PARA CARACTERIZACIÓN DE MATERIALES

NOTAS

- ⇒ De acuerdo con los resultados históricos de los análisis de peligrosidad CRETIB, estos materiales **no presentan características corrosivas, reactivas, explosivas, tóxicas, inflamables, infecciosas ni radiactivas**; por lo tanto, pueden clasificarse como **residuos no peligrosos**, conforme a lo definido en el Título 6 del Decreto 1076 de 2015.
- ➡ Esta ficha técnica general no incluye los resultados completos de los siguientes análisis: tamaño de partículas por difracción láser, tamaño de partículas por métodos mecánicos, Contenido de metales, Microscopía electrónica de barrido Energy Dispersive X-Ray (SEM-EDS), Análisis termogravimétrico (TGA), Espectrometría de Difracción de Rayos X (DRX), Espectrometría de Fluorescencia de Rayos X (XRF). En caso de que se requiera información específica de alguno de estos análisis, puede ser solicitada durante el proceso.

Producto documental, proyecto:

EVALUACIÓN DE ALTERNATIVAS DE ECONOMÍA CIRCULAR PARA EL SECADO Y APROVECHAMIENTO DE LODOS GENERADOS EN EL PROCESO DE POTABILIZACIÓN DE EMPRESAS PÚBLICAS DE MEDELLÍN E.S.P. -EPM-

Elaborado por:

Eliana Patricia Llano Cardona Pasante Postdoctoral

Sara Camila Muñoz Vásquez Practicante profesional

Rodolfo Mira

Jefe Área de Potabilización EPM